Efficient Myocardial Segmentation using Local Phase Quantization (LPQ) and Automatic Segmentation Technique
نویسندگان
چکیده
The low and high arrhythmic risk of myocardial infarction is classified based on size, location, and textural information of scarred myocardium. These features are extracted from late gadolinium (LG) enhanced cardiac magnetic resonance images (MRI) of post-MI patients. The risk level caused by features are evaluated by using various classifiers including k-nearest neighbor (k-NN), support vector machine (SVM), decision tree, and random forest classifier. Here, high risk patients are separated from low risk patients based on the decision made by Left Ventricular Ejection Fraction (LVEF) and biomarkers based on scar characteristics. However, additional image processing techniques are needed to have clear visibility for differentiating scar texture between two risk groups. In order to maintain balanced risk groups, synthetic minority over-sampling technique (SMOTE) is used in existing system. But accuracy is limited further because of imbalance risk groups and manual segmentation of classifier. So to improve accuracy, proposed method uses automatic segmentation and Local Phase Quantization (LPQ).
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کامل